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Robust computation of the
rotation minimizing frame for
sweep surface modeling*

Wenping Wangt and Barry Joet

The rotation minimizing frame is superior to the Frenet frame
for modeling sweep surfaces [F. Klok, Computer Aided Geo-
metric Design 3, 217-229 (1986)]. However, the existing
techniques for computing the rotation minimizing frame
either have low approximation degree or are unrobust numeri-
cally. We present a method to compute an approximate rota-
tion minimizing frame in a robust and efficient manner. The
following problem is studied. Given an axial curve A(u) in
space and a 2D cross-section curve C(v), generate a sweep
surface S(u, v) = A(u) + F(u)C(v), where F(u) is a rotation
minimizing frame defined on A(x). Our method works by
approximating A(u) with a G' circular-arc spline curve and
then sweeping C(v) with a rotation minimizing frame along the
approximating circular-arc spline curve; the sweep surface thus
generated is an approximation of S(u, v). The advantages of
this method are: (1) the approximate rotation minimizing frame
is computed robustly, with its error being much smaller than
would be obtained by Klok’s linear method with the same
number of segmentations; (2) the sweep surface generated is
a NURBS surface if the cross-section curve is a NURBS
curve; (3) the method is easily adapted to generating a smooth
and closed sweep surface when A(u) is a closed smooth curve.
© 1997 Elsevier Science Ltd. All rights reserved.
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INTRODUCTION
Problem and definitions

Problem

Sweeping is a powerful technique to generate surfaces in
computer graphics. There has been abundant research in
the modeling and rendering of sweep surfaces, such as in
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References 3, 5, 6, 8, 12, 22, 30. Given an axial curve A (u)
in space and a cross-section curve C(v), a sweep surface
S(u, v) is generated by S(u, v) = A(u) + F(u)C(v),
where F(u) is an orthogonal matrix representing a
moving frame along A4(u). Geometrically, S(u, v) is
generated by sweeping C(v) along A(u) with orientation
F(u). To simplify discussion, we assume that C(v) is a
2D curve and is always placed in the plane passing
through A4 (u) and with normal vector 4’(«) during sweep-
ing; that is, one axis of the frame F(u) is aligned with the
tangent vector A’'(u). The key problem in sweep surface
generation is to determine the moving frame F(u).

In the rest of this section, we will introduce two
moving frames that have been commonly used, the
Frenet frame and the rotation minimizing frame, and
point out their problems that motivated our research.

Frenet frame and its variants

The Frenet frame F(u) = [N(u) B(u) T(u)l is defined on
a smooth space curve A4 (u) with 4'(u) x A" (u) # 0. Here
N(u), B(u), and T'(u) are the normal, binormal, and unit
tangent vectors of A(u) respectively, and are given by

A  A'(u) x A" (u)
TW=17wT Y =T7wxaw]

N(u) =B(u) x T(u) (1)

When the axial curve contains curvature-vanishing
points where 4'(u) x A"(u) = 0, the Frenet frame given
by Equation | is undefined at such points; for instance,
this occurs at an inflection point of a plane curve A4(u).
Moreover, the Frenet frame could flip abruptly on an S-
shaped space curve, causing the sweep surface to be
twisted (see Figure la). To fix the poor behavior of the
Frenet frame across an inflection point of a planar curve,
a variant of the Frenet frame has been proposed®'. Sup-
pose A(u) is a curve contained in a plane with the unit
normal vector N,. Then this modified Frenet frame
F(u) = [Fy(u) F,(u) F.(u)] is defined as

F.(u)=A'w)/ || A'() ||, Fy(u)=No
F,(u) = Fy(u) x F(u) )

This remedy eliminates effectively the undesirable flip-
ping of the Frenet frame across an inflection point of a
regular plane curve.

To deal with general 3D axial curves, it is suggested in
Reference 8 that the points on the curve where the Frenet
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(b)

frame is undefined can be detected and used to divide the
curve into segments, and then only Frenet frames over
these segments are computed. This method has proved to
be effective in some examples shown in Reference 8. But
detecting the curvature-vanishing points of a general 3D
curve is not a trivial task'*. Moreover, the frame derived
with this method still suffers from other problems, which
will be discussed later, of the Frenet frame of a smooth
axial curve with non-vanishing curvature.

There is another practical restriction in using the
Frenet frame. Note that, for a general space curve, by
Equation 1, the continuity of the Frenet frame is the
same as that of 4”(«). So when A(u) is a cubic B-spline
curve, as it is in general only C? continuous, F(u) will
only be C’ continuous, implying that the generated sweep
surface S(u, v) will only be C” continuous. It can be shown
that in this case S(u, v) is in general only G° continuous,
i.e. not visually smooth. Figure 2 shows a G’ sweep
surface generated with the Frenet frame along a cubic
B-spline curve. (Note that the surface in Figure 2 looks a
little smoother than G” because of the polygon shading
method used.) Therefore, when a visually smooth sweep
surface is desired, the use of the Frenet frame will rule
out the cubic B-spline curves to be used as axial curves.

Rotation minimizing frame
Even for a smooth space curve A(u) with A"(u) x A" (u)
# 0, the Frenet frame exhibits a certain amount of twist
about the tangent of A(u) which is determined by the
torsion of the curve and is often unnatural or undesir-
able. This is best illustrated in Figure 3a showing a sweep
surface along a free-form curve and in Plate I showing a
sweep surface along a torus knot, both generated by the
Frenet frame.

To resolve the above problem of the Frenet frame
rotating about the axial curve, the rotation minimizing

Figure2 A G" surface generated by the Frenet frame along a € cubic
spline curve

Figure 1 (a) A surface generated by the Frenet frame. (b) A surface
generated by the RMF computed using Equation 4. (c) A surface
generated by the biarc method
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(b)

Figure 3 (a) A surface generated by the Frenet frame. (b) A surface
generated by RMF, computed using the biarc method

frame is proposed for sweep surface modeling in Refer-
ence 12; an earlier study on the rotation minimizing
frame in differential geometry can be found in Reference
2. To contrast with the Frenet frame, a sweep surface
which is generated with the rotation minimizing frame is
shown in Figure 3b, along the same free-form curve
Figure 3a. In the following the rotation minimizing frame
will be referred to as RMF. Let P(s) be an axial curve
with arclength parameter s. Assume that P(s) is twice
differentiable. Denote an RMF of P(s) by F(s)=
[X(s) Y(s) Z(s)], where Z(s) is assigned the unit vector
P/(s). Then X (s) and Y (s) are defined to be the solutions
of the differential equation

Vi(s) = —(P"(s)- V()P (s) )

Plate 1 A surface by the Frenet frame along a torus knot given by P(r) =
((0.6 4 0.3 cos(Tt)) cos(2t), (0.6 + 0.3cos(7¢))sin(2¢), 0.3sin(7¢))

with X (0) and ¥ (0) forming a right-handed orthonormal
coordinate frame with Z(0); see Reference 12 for deri-
vation. Different initial vectors X'(0) and ¥ (0) determine
different RMFs of P(s), and two RMFs of P(s) differ by
a rotation of a constant angle about the tangent of P(s).

An intuitive illustration of the RMF is shown by a
sweep surface in Figure 4 which is generated with a
polygonal axial curve and prismatic cross-section curve.
Over each straight line segment of the axial curve, the
cross-section curve is translated along the segment. This
method of computing the RMF along a polygonal curve
is proposed in Reference 12.

Computing rotation minimizing frame
Although the RMF is readily defined by Equation 3,
computing the RMF efficiently and robustly is still a

Figure 4 A rotation minimizing surface along a polygonal curve
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problem that has not been solved satisfactorily. Below
we review two approaches in literature to computing the
RMF.

The first method approximates the axial curvc, by a
polygonal curve and then applies Klok’s method'? to the
polygonal axial curve, as described above. This method
computes an approximation of the RMF. The normal
plane projection method, which is essentially the same as
Klok’s method, is proposed in Reference 25 and is
explained in detail in Reference 19. Several other methods
of approximating RMF, also based on the polygonal
approximation of the axial curve, are suggested in
Reference 7. In prdcllce Klok’s method has proven to
be numerically robust”'?. As we will see later, Klok’s
method has lower convergence rates than those of our
biarc method in both the approximation of the axial
curve and the approximation of RMF.

The second method of computing RMF is based on
the integral formula for RMF given in Reference 10,
which also serves as another definition of RMF. Let an
RMF of the axial curve A(u) be F(u)=[X(u),
Y(u), Z(u)]. Then Z(u) = A'(u)/ || A'(u) ||, and X (u)
and Y (u) are given by

X(u) = cos@(u) N(u) + sinf(u) B(u)
Y(u) = —sin@(u) N(u)+ cosf(u) B(u)

with

a(u)—euz—j

u,

]

(1) || A'(1) || dt (4)

where 7(u) is the torsion of A(u). Here A(u) is not
necessarily an arclength parameterization. According to
the second definition based on integral (4), an RMF is
given by rotating the Frenet frame about the tangent of
the curve by the angle determined by Equation 4. In
other words, the amount of twist of the Frenet frame is
equal to the integrated torsion of A(u), and this twist
must be compensated by a rotation to convert the Frenet
frame to an RMF. (Incidentally, the minus sign in front
of the integral in Equation 4 is missing in Reference 10.)

Since for most axial curves the integral (4) cannot be
integrated in closed form, numerical integration has to
be used to approximate f(u). Numerical integration of
Equation 4 involves sampling points on A(u) and sum-
ming up the values of the integrand at the sampled
points, and this in general leads to an approximation of
the RMF.

However, this second method suffers from lack of
robustness for a general space curve. The torsion in
Equation 4 is given by Reference 13:

det(A'(u), A" (u), 4" (u))

) = < A P

On one hand, evaluating 7(«) at or near points of A(u)
where A'(u) x A" (u) = 0 is unrobust. On the other hand,
ignoring such points when sampling 7(«) in numerical
integration will cause a large error. Also, as in this
method an RMF is obtained by rotating the Frenet
frame, which is used as a reference, the numerically
unrobust computation of the Frenet frame, as pointed
out in Section 1.1, also makes the second method
unrobust. Hence this method cannot be used even for
some curves that are smooth and nice by all practical
criteria. This is revealed in Figure 1b showing a sweep
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surface generated with this method, using the same axial
curve as in Figure la.

Biarc method

We will present an efficient and robust approximate
method to model a sweep surface with an RMF along a
G' space curve The idea is to first approximate the axial
curve by a G' circular-arc spline curve and then generate
a sweep surface with an RMF computed along the
approximating circular-arc spline curve. Thc G' urcular»
arc spline curve is constructed with biarcs®*? and so
has desirable flexibility for approximation. Finally, as we
will see, computing an RMF along a circular-arc spline
curve is easy and robust. Figure 3b and Plate 2 show two
sweep surfaces generated with the biarc method; the
same axial curves in Figure 3a and Plate I are used,
respectively.

It is known®'? that computmg an RMF on a space
curve composed of piecewise plane curves is easy. For a
plane curve the Frenet frame can readily be converted to
an RMF by keeping the binormal at all times in a
constant direction perpendicular to the embedding plane
of the curve; therefore the frame given by Equation 2 is
an RMF. We explore this idea by approximating an
arbitrary space curve with a piecewise plane curve con-
sisting of circular arcs. So our method is an extension of
Klok’s method of computing RMF'2, We will show that,
with the same number of segmentations of an axial curve,
our method gives not only a better approximation of the
axial curve but also a much better approximation of the
RMF than Klok’s method.

The circular arc has the nice property that its RMF has
a simple rational parameterization as well as a simple
arclength parameterization. These two parameterizations
lead to a NURBS representation of the generated sweep
surface and an application of our method to modeling a
closed sweep surface, respectively.

A method of computing a NURBS approximation of a
sweep surface generated with any moving frame has been
proposed in Reference 3. However, it is assumed in that

Plate 2 A surface by the RMF computed using the biarc method,
along the same torus knot



work that a moving frame has been computed before
computing its NURBS approximation. Therefore the
problem solved there is different from that considered in
our work, as we are concerned with the robust compu-
tation and representation of the RMF, and the NURBS
approximation just follows as a consequence of our
algorithm,

The remainder of the paper is organized as follows. In
the second and third sections we will consider using
biarcs to construct a G' circular-arc spline curve to
approximate the axial curve. We will also discuss the
error measurement of this approximation. In the fourth
section we will discuss how to compute an RMF of the
circular-arc spline curve, and how to use this RMF
for sweep surface modeling, including computing the
NURBS representation of the sweep surface when the
cross-section is a NURBS curve, and modeling a closed
sweep surface when the axial curve is closed. In the fifth
section we will present some examples of the sweep
surfaces modeled with our method and compare our
method to some other existing techniques.

CONSTRUCTING BIARCS

The biarc is a space curve composed of two G' joined
circular arcs. When the two arcs of a biarc are coplanar,
it is called a plane biarc. The study of the plane biarc
dates back to the 1970s"*?'*. The use of 3D biarcs
in CAGD was pioneered in References 17, 20, 23. In
Reference 20 the biarc is used to approximate intersec-
tion curves between two surfaces, while in References 17,
23 it is studied mainly for free-form surface modeling
with cyclidal patches. A different type of circular-arc
splines for fitting 3D data is discussed in Reference 11.
The problem of approximating a space curve by a
circular-arc spline curve has also been studied in Ref-
erences 20, 23. The idea is to approximate a space curve
by a biarc interpolating the endpoints and end tangents
of the curve.

We will give a brief review about the biarc and its
construction. For more discussion on biarcs in 3D, the
reader is referred to References 9, 17, 20, 23, 28. We need
to list some properties of biarcs in order to derive a few
new formulae for our present application. Most of these
properties will be given without proofs since they can be
found in the above sources.

Properties of biarcs

Let X, and X, be two distinct points in E°, represented as
3D row vectors of coordinates. Let 7}, and 7' be unit
vectors. The biarc interpolation problem is to find biarcs
that interpolate the points X; and X| and have unit
tangent vectors Ty and 7 at X, and X, respectively (see
Figure 5). The above data for the biarc interpolation
problem is denoted by D = {X,, X, T,, T }.

Definition 2.1

Data D= {Xy,X,, Ty, T\} is said to be singular if
Xo+pTy =X, + pT, for some p#0 or Ty=T, and
(X, — Xﬂ)TUT = 0; otherwise D is regular.

Let a half line starting at point X and going in
direction 7" be denoted by (X,7). Let 2 denote the
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T

Figure 5 A space biarc interpolating D = {X;, X}, T, T }

perpendicular bisecting plane of the line segment X, JX,.
Then singular data D = {X,, X, T,, T\ } is characterized
by that either the half lines (X;, 7;) and (X, 7)) intersect
on the plane # or the half lines (X, —T7}) and (X,,—T))
intersect on the plane #.

Let B denote a biarc consisting of two circular arcs C,
and C, joined at point Z, which is not necessarily a point
on the curve that is being approximated. Let AX,Y,Z
and AZY, X, be the control triangles of C, and C, (see
Figure 5). Let Yy =X, +koTy and Y, =X, -k T,.
Clearly, ky and k; are interrelated, and the pair (kg, k)
determine a unique biarc for any given data D. We will
assume kyk, # 0, for otherwise C, or C, degenerates into
a single point and the biarc becomes degenerate.
Property 1 17,20,28
For regular data D = {X,,X,, Ty, T\} every solution
(kl]skl)‘ k{)kl __,.é 03 Of

| X1 — X, |I> — 2ko(Xy — Xo)To — 2ky(Xy — Xo) T
— 2koky (1 = ToT{) = 0 (5)

gives a biarc interpolating D = { X, X,, Ty, T, }; conver-
sely, for any biarc interpolating D, its ky and k, satisfy
Equation 5.

Since it can be shown that Equation 5 has infinitely
many solutions (ky, k) with kyk, # 0, there exist infinitely
many biarcs interpolating data D. More specifically, we
have the following.

Property 2

Let D = {X,, X, Ty, T } be regular data. When Ty # T},
the locus J of the joints of all the biarcs interpolating D is a
circle passing through X, and X, (see Figure 6). The

Figure 6 The joints of the biarcs interpolating D form a circle
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parametric equation of the circle J in kg is

_ F(ko)
where
F(ko) =kg{2(1 — ToTT) X, +2[(X, — Xo) T |
x (Ty — To)} + ko{2[(X) — Xo) TV X,

—2[(X, — Xo) T3 1Xo— || X1 — Xo |I?

x (Ty = To)}+ || X1 — Xo |I* Xo

and
g(ko) =2kg(1 — ToTT) + 2ko(Xy — Xo)(T) — To)™
+ | X; — X |IP

When T, = T,, the locus J becomes the straight line
passing through X, and X,.

It was first noted in Reference 23 that all the biarcs
interpolating regular data D are in general contained in a
sphere: they are contained in a plane when the regular data
D = {X,, X,, Ty, T\ } is contained in a plane. The reader is
referred to Reference 9 for a geometric characterization
of the circle J.

Suppose that the arcs C; and C, are represented as
rational quadratic Bézier curves, in the form

Q0B (1) +wQ By 5(1) + Q2B15(1)

, 0<r<ld
By (1) +wB) (1) + By(f)

Q(r) =

where B,,(t) = [2!/i!(2 — i)!]£(1 — {)*~". By using control
points at infinity, the dbove form can be adapted to
representing a semicircle'®. Q(1) is a minor arc if w > 0,
and a major arc if w < 0.

Property 32

For any non-zero solution (ky,k,) of Equation 5, the
weights wy and wy of the arcs Cy and C| in their Bézier
representations are given by

W=——7———, wW=—77— 7

Computing equal-chord biarcs

We say that D is well-behaved if (X; — X,,)TQT >0 and
(X; — X,)T{ > 0. The geometric meaning of well-
behaved data is that the projections of 7, and 7| on
the vector X; — X, are both positive, or equivalently, the
angles formed by X, — X, with T, and T, are both less
than /2. It is easy to verify that well-behaved data are
regular. We assume that all data D considered from now
on are well-behaved.

By Property 3, the arcs C;; and C, of a biarc are minor
arcs if and only if k; > 0 and k; > 0. Since minor arcs
have relatively small windings as compared with major
arcs, they are more desirable than major arcs for shape
design. We now consider choosing a biarc interpolating
D that always consists of two minor arcs. The two arcs of
the biarc we will choose have equal-length chords, so it is
called the equal-chord biare.

The use of equal-chord biarcs is first suggested in
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References 9, 23, but only in geometric terms. So we will
derive some formulae necessary for computing the equal-
chord biarc. To determine the joint of the equal-chord
biarc, we use the perpendicular bisecting plane of the line
segment X, X, to intersect the circle J, the locus of biarc
joints (see Property 2). The equation of this plane is

(2X — Xo — X,)(X; — Xo)" =

Substituting the parametric Equation 6 of J into the
above equation, we obtain a quadratic equation in kg,

ak + bkg+c¢ =0 (8)
where
a=2|X;— X |I> (1 = ToTT) +4[(X, — X)T¢ |

x [(X; = Xo)(Ty — To)"]
b=4((X, — X)T5 | || X; — Xo |I?
c=—|| X - X |*

Geometrically, it is obvious that there are two intersec-
tions between the plane and the circle J. Algebraically,
after simplification, we have the determinant

A =4 X — X |I* {4[(X) — Xo)TJ|[(X; — Xo) T ]
+ | Ty = T P Xy — Xo [P}
=4 Xo— X, |I* {4(X1 — Xo) T3 )[(X; — Xo) T ]

- Xo)(T) — To)"1*}
- X |I* (%

+ (X,

=4 X, — Xo) (T + Tp)T? > 0

The first inequality is by Cauchy—Schwarz inequality,
and the second inequality follows from the assumption
that D is well-behaved.

Let H=A/@4| X, —X,|[*). Then H >0. After
simplification, the two solutions of k; from Equation 8,
together with their corresponding k, solved from Equation
5, can be shown to be

K _ | X — X |I?
O T X - X)TT +VH
i _ | X=X |
b T2, - X)TT + VH
and
K@ | X — X, |I?
22X - X)TY - VH
"'\'(12] b | X1 — Xo |I?

20X — Xo)TT — VA

Thus there are two equal-chord biarcs, given by these two
o . . F L. . s () g1
pairs of solutions. Since the solution pair (k;’, k")
are always positive for any well-behaved data, meaning
that the corresponding equal-chord biarc always consists
of two minor arcs, we will choose the biarc given by

(ky", ki) and call it the equal-chord biarc,

ul‘herc have been other choices of the biarc proposed in
the literature, such as the biarc with ky =k, >0 in
Reference 20 and the minimum twist biarc in Reference
17. It is shown empirically in Reference 27 that in most
cases the equal-chord biarc has the smallest difference



between the curvature radii of the two arcs than that of
the biarcs given by the other two choices. This is another
reason why the equal-chord biarc is used in this work.

APPROXIMATING AXIAL CURVES
Adaptive subdivision and approximation

In this section we consider constructing a G' circular-arc
spline curve to approximate the given axial curve A(u).
The curve A(u) is first subdivided into short curve seg-
ments whose endpoints X}, X; and end tangent directions
Ty, T, form well-behaved data. Each curve segment is
then approximated by an equal-chord biarc. In the
following we will emphasize on the error estimation of
this approximation.

In many applications it is required that the error of
approximation be less then a prescribed tolerance e. This
requirement can be met by adaptively subdividing the
axial curve A(u). Let P(u), uy <u<u,, be a curve segment
resulting from an initial subdivision of A(u). Let X, =
P(ug), Xy = P(wy), To= P(ug)/ || P(uo) ||, and T, =
P(uy)/ || P(u,)||. Then P(u) is approximated by the
equal-chord biarc B interpolating D = {X,, X, T,, T\ }.
Assume for the moment that an estimate & of the
approximation error of P(u) by B can be obtained. If
6 <e, the approximation will be accepted; otherwise P(u)
will be further subdivided into two pieces, Py(u) = P(u),
uy<u<(ug+u)/2, and Py(u) = P(u), (ug+1;)/2<u<
uy. Py(u) and P, (u) are then approximated by the equal-
chord biarcs respectively, and the error analysis is per-
formed for each piece again. Error estimation and sub-
division are repeated recursively until the error tolerance is
satisfied over all the curve segments resulting from sub-
dividing A(u). We assume that all the above interpola-
tion data are well-behaved.

It has been proved” that the above approximation
process is convergent and the approximation error of the
equal-chord biarc is O(hs), where / is the arclength of the
curve segment approximated by the biarc. This means
that subdividing a curve segment into two pieces of about
equal length reduces the approximation error asymp-
totically by a factor of 8. For a study of this problem in
the setting of approximating a planar curve by plane
biarcs, the reader is referred to Reference 16.

Error estimation

In the approximation procedure above we still need to
compute a tight estimate of the approximation error to
decide whether or not the prescribed error tolerance is
satisfied. The approximation error is the distance between
the curve approximated and the circular-arc spline curve.
Measuring the distance between two space curves is dif-
ferent from and more difficult than measuring the
‘distance’ between two univariate functions. A simple
approach is to sample a set of points on the biarc and
another set of points on the curve segment approximated,
and then compute the Hausdorff distance dy(-, )
between the two sets. The distance d};( -, +) is defined as

dy (A, B) = max{maxmin{d(x, y)|x € 4,y € B},
X ¥

max min{d(x,y)|x € 4,y € B}}
¥ x
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for two compact sets of 4 and B of E*, where d(-, - ) is
the Euclidean distance between two points. Although
this approach works for any two parametric curves in
space, besides being computationally expensive, it is dif-
ficult to use because choosing an effective sampling interval
depends very much on the distance to be measured.

We describe an efficient method that computes accur-
ately the approximation error at any point of a para-
metric curve A(u) approximated by a biarc. Thus
computing the error is reduced to evaluating a uni-
variate function d(u) defined on the curve. We also
consider obtaining an upper bound of the approximation
error when A(u) is a rational curve.

To simplify discussion, we make the practical assump-
tion that the approximation of the original axial curve by
the biarc spline curve is fine enough so that the normal
plane at any point of the biarc spline curve intersects the
approximated axial curve in exactly one point in a
neighborhood of the biarc spline curve.

Let R(u), u € [uy, u;], be a curve segment on the axial
curve A(u). Suppose R(u) is approximated by an equal-
chord biarc B consisting of two arcs Cy and C,. The
segment R(u) is first subdivided into two segments R ()
and R|(u) by the normal plane ¥ of the biarc B at the
joint of its two arcs. Then the distance from Ry(u) to C,
and the distance from R,(u) to C, are computed.

Now we have reduced the problem to computing the
distance from a parametric curve to a single circular arc.
Since a circle in E? is the intersection of a plane and a
right circular cylinder, the problem is further reduced to
computing the distance from a parametric curve to the
plane and the cylinder (see Figure 7).

Suppose the curve P(u), u € [0, 1], is approximated by
circular arc C in space. Let N be the unit normal vector
of the plane containing the arc C. Let O be the center of
the arc C, and r be the radius of C. Then the circle
containing C is the intersection of the plane f(X) =
(X — O¢)N" =0 and the right circular cylinder g(X) =
| (X =0¢)=[(X —Oc)NTIN || —r=0, where X =
(x,p,z), and | . || is Euclidean norm. Then |f(X)| and
|g(X)| are the distances of a point X to the plane and the
cylinder, respectively (see Figure 7). The distance from
point P(u) to the circle containing C is therefore

d(u) = [f*(P(u)) + £ (Pw)]'?, ue(0,1]

lg(P(u))|

B
;.]
.‘/M [F(P(u)

Figure 7 Distance measurement from P(u) to circular arc C
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From the assumption that approximation by the biarc
spline curve is fine enough, and because we always use
the normal plane of the biarc at its joint to subdivide the
curve approximated into two parts, the whole curve P(u)
lies in the wedge of the cylinder subtended by the arc C.
So d(u) is also the distance from the point P(u) to the arc

The maximum error over the whole curve P(u) is then

dp = max d(u) = max[*(P() +&*(P@))"”* (%)
uel0
Using Equation 9, dp can be approximated by evaluating
d(u) at a sufficient number of values of w.
When P(u) is a rational curve, it is possible to obtain
an upper bound of d; that is easy to compute. Since

T[g};]lfz ) + &g (P(u))])'?
Jggflf(P( Dl4—gggﬁlg(P(uDI
we have

dp = max | /(P()| + max lg(P()|

as an upper bound of dp. Let h(X) = (|| (X = O¢) |* -

(X = Oc)NTP —P)/r. As

(X =0¢) = [(X = Oc)N"IN |> =
& = X =00) = (X —O)NTIN [+ r
|l =00) - [ - 0NN | - 2

| (X —0¢) II> =[(X — Oc)NT] =

— |h(X)|
dp = max | (P(w)] + max [K(P(W)

is an upper bound of d, since dp>dp. Let the Bézier
representation of P(u) be

k

2i=o WiPiB;y(u)

k . ]

2oi=0 WiB;x(u)

We may assume that all the weights w; of P(u) are non-
negative, as any finite and continuous piece of a rational
curve can be subdivided into sufficiently short segments
which have a Bézier representation with non-negative

weights'®. Then, representing the polynomials f(P(u))
and h(P(u)) in Bernstein basis, we have

zf 0 Wi/iBik(u)
:u “{Bi,k(”)

Z?io W?”fo.zk(“)

> o WiB; i (u)

with the weights wf = w; and w} bemg also non-ncgatwc
Denote D, = max,u0!f| + max?, |h,|. Clearly Dy, is
an upper bound of dp, as

P(u) = ue [0, ]]

S(P(u)) =

h(P(u)) =

Dyax > dp>dp>dp

It can be shown, though less trivially, that D, is less
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than a constant multiple of dp; but we will not pursue
these details here. Our experience shows that, asympto-
tically, D, <4dp when P(u) is a cubic polynomial curve.

Example 3.1
Consider the cubic Beézier curve P(u),

P(u) = PyBy3(u) + P B 3(u) + Py By 3(u) + P3B33(u),
o<u<l (10)

where P, = [0.0,0.0,—0.75], P, = [2.0,0.0,—0.25], P, =
[0.0,2.0,0. 25] and P; = [0.0,0.0,0.75]. The curve is sub-
divided into 2¢ segments in d levels of binary subdivision,
1<d<11,s0at level d, 27 biarcs are used to approximate
P(u). The approximation errors at all the levels are listed
in Table 1. It can be seen that, as expected, the approxi-
mation error decreases by a factor of about 8 with each
subdivision.

GENERATING SWEEP SURFACE

Let % denote the circular-arc spline curve approximat-
ing the axial curve A(u). We now compute a rotation
minimizing frame (RMF) of % to generate a sweep
surface along %. To this end we need to assign a param-
eterization to %. In the following we will discuss the
rational quadratic parameterization and the arclength
parameterization of 6.

Rational quadratic parameterization

Representing RMF in NURBS form

Suppose that % is composed of n circular arcs. Since
a circular arc is a rational quadratic Bézier curve, € is
a quadratic NURBS curve with double knots. Let a
circular arc of € be

o) = QoBoa(1) + WlQPLE'-:I),sz) + 02By,(1) 1

te0,1]

where w(t) = By, (1) + wy By 1(1) + By, (7). We now com-
pute the Frenet frame F(r) = [X(.') Y (1) Z(1)] of Q(1),
which is also an RMF of Q(¢). Assume for the moment
that Q(¢) is not a straight line segment. Let O be the
center and r the radius of the underlying circle of the
arc Q(¢). Let X; = (O — Q;)/r, j = 0,1,2. Then the unit

Table 1 The error of approximation of a cubic curve (Equation 10) by
n = 2% space biarcs

Depth of
subdivision (d) Error

731 x 1072
1.47 x 1072
1.68 x 1077
1.48 x 107*
1.54 x 10°°
1.72 x 10°¢
2.02x 1077
245x10°°
3.03 % 1077
3.76 x 107"
470 x 107"

— D 00 =1 D Ln b b e




normal vector of Q(1) is

(o = 2220

_ XoBy(t) +w X By 5(1) + X3 By5(1)
w(t)

Let N, denote the unit normal vector of the plane con-
taining Q(¢). Then

A (Q1 — Qo) X (@2 — Q)
Il (@1 — Qo) x (@2 — Qo) |l
Let Y(¢) = Ny. Then
YoBos(1) +w Y By a(t) + Y2 By (1)
w(1)
where Yy =Y, =Y, = N,. Denoting Z; = X; x ¥, j =
0, 1,2, the unit tangent vector of Q(1) is
Z(t)=X(1) x Y(1)
_ ZyBos(1) + w1 Zy By 5(t) + Z3By5(1)
N w(t)

Y(1) =

Therefore the Frenet frame is
F(t) =[X(1) Y(1) Z(1)]

= ﬁ {[X{] Yo ZO]BD.Z(I) + wl[X| Y] 21131‘2(1)

+ (X2 Y3 Z,]By (1)}
_ FoBoa(t) + wiF1Buo(1) + FaBy (1)
By (t) + w1 By 2(t) + Bya(1)

where F;, = [X; Y¥; Z}],j=0,1,2.
Let F;(t) denote the Frenet frame of the ith arc Q;(r) of
%. Denote

(11)

FioBos(1) + w1 Fi 1 By (1) + Fi2 By 5(1)
By (1) + wi By o(t) + Bya(t) '

i=0,1,...n—1 (12)

Because two adjacent circular arcs Q,(¢) and Q,,(t) of €
are in general not coplanar, Fi(t) and F, (¢) are dis-
continuous at the joining point (see Figure 8).

In this case the angle between the normal vectors
of Q,(r) and Q,,(¢) at their joint should be used to
adjust the subsequent frame so that the two frames meet
continuously at the joint.

Specifically, let 6;,, be the angle between the normal
vector X;(1) of the arc Q;(¢) and the normal vector
X:.1(0) of the arc Q,,,(7), which is defined by

041 =sign[(X;41(0) x X;(1))Z;(1)7]
x arccos[X;(1)X;41(0)”]

Fi(1) =

Define
i=0.10.0m—2

with ¢, being a user-specified constant. Then a con-
tinuous RMF of % is defined by a sequence of frames
G;(1) over the arcs Q;(t), and the G;() are obtained by
adjusting the F;(¢) as follows,

Gi(1) = Fi(1)Rz(a),

iy = o+ 0y,

i=01,....,.n—1

where R,(a) is a rotation of angle o about the Z-axis.

Rotation minimizing frame: W Wang and B Joe

Figure 8 Discontinuity between two consecutive frames

So, by Equation 12,
GioBya(t) +w;i1Gi1 By 2(t) + G2 By (1)
By (1) + wi By o(1) + By (1) '

i=0,1,...,n—1 (13)

where G,—__J: = F‘:II_;Rz(a;),j = 0, 1,2

It has been assumed so far that each Q;(¢) is a circular
arc with a finite radius. When Q;(¢) is a line segment, its
center and radius are not defined, neither are the vectors
X,(t) and Y,(1). In this case the frame G;(¢) should be
defined as a constant frame equal to the ending frame of
the preceding arc (see Figure 9).

Gi(1) =

NURBS sweep surfaces

Since the RMF of the axial curve % has rational param-
eterization, when the cross-section is given as a NURBS
curve, the sweep surface generated along % is represent-
able as a NURBS surface. We now give the expression
for this NURBS sweep surface. Let the cross-section
curve be

_ > 08k CiNi(v)
> b0 8&kNe(v)

By Equations 13 and 14, the sweep surface patch over the

arc Q;(1) is
Si(t, v) =G(1)C(v) + Qi(1)
K 370 380 wi8k(GiiCr + Qi) Bya () Ny y(v)
S0 b0 Wi gk B2 (t) Ny (v)
tef0,1], i=0,1,2,...,n—1

C(v) (14)

1

where w;q = w;, = 1. The collection of the S;(t,v) is

Gt
o Gi-1(t)

Figure 9 An RMF on a line segment
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expediently denoted by S(7,v). A NURBS sweep surface
thus generated is shown in Figure 10.

Since the frames G,(¢) are continuous along %, the
patches S;(t,v) are continuous along ¢ as well. Further-
more, because the partial derivatives 9S;(¢,v)/01|,_, and
38,1 (t,v) /01, are both parallel to the vector Qi(7)|,,,
the patches S;(¢,v) and S, (¢, v) in fact join with G' con-
tinuity across the curve S;(1,v), provided that the cross-
section C(v) is G' continuous.

Arclength parameterization

Arclength parameterization of RMF

Circular arcs have simple arclength parameterizations in
terms of trigonometric functions. Assume that all the
arcs of % are minor arcs and are not straight line
segments. Suppose that the ith arc of ¢ has endpoints P,
and P;,, center O, radius r;, and arclength s;. Then this
arc has the arclength parameterization

Pi(s) = 0;

4 (Pig— O;)sin(#; — s/r;) + (P;y — O;)sin(s/r;)

sin ¢;
s € [0,s]

where 6, is the central angle subtended by the arc P;(s),
and O < #; < m by assumption. To our knowledge this
nice expression for the arclength parameterization of a
circular arc appeared first in Reference 24, though in a
slightly different form.

Let the Frenet frame of P;(s) (also an RMF in this
case) be Fi(s) = [X:(s) Y;(s) Zi(s)]. Then it is easy to
show that

Xipsin(@; — s/r;) + X; | sin(s/r;)
sin f;
(Pip— 0;) X (P — O)

Yi(s) = =Y;
(5) | (Pig—0;) x (P;y —O) ||

Xi(s) =

Figure 10 A NURBS sweep surface generated by the biarc method
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Ziosin(0; — s/r;) + Z; sin(s/r;)
sin 6, !

Zi(5) = X;(s) x Yi(s) =

s € 0,5

where
X, =(0; -
Similar to the case of rational quadratic parameteriza-
tion, the frames Fi(s) can be adjusted to form a con-
tinuous RMF of ¢, which can then be used to generate a

G' sweep surface along . We will not repeat the details
here.

Pf',}")/rl' und Zf._; = ng x }!; = 0, ]

Modeling closed sweep surface

The advantage of parameterizing % in arclength is that
one can sample points of % evenly with respect to arc-
length, Here we discuss an application of the arclength
parameterization of RMF to modeling a closed sweep
surface; that is, the axial curve is given as a closed smooth
space curve and it is required that the sweep surface be
also closed and smooth. Note that the RMF of a closed
smooth axial curve does not in general result in a closed
sweep surface. So we have to adjust the RMF of 4 into
such a moving frame that the generated sweep surface is
closed and, meanwhile, the new moving frame deviates
from the RMF as little as possible.

Any moving frame of the axial curve ¥ can be
obtained by twisting the RMF of % about the tangent
of ¢. With the arclength parametrization of %, all we
need to do is sample the RMF of ¢ with equal arclength
intervals and evenly distribute the amount of twist of the
new moving frame by arclength along . This task is
facilitated by the simple arclength parameterization of €.
Three closed sweep surfaces modeled using this method
are shown in Plates 3-5.

Let a smooth and closed axial curve € be denoted by
P(1), t€[0,1], i.e. P(0)= P(1) and P(0)/ || P(0) || =
P(1)/ || P(1)||. When a global twist is required to make
the two ends of the sweep surface meet smoothly,

Plate 3 A closed surface given by the biarc method, along the same
torus knot



Plate 4 A closed surface computed using the biarc method

assuming that the twist is evenly distributed over the
parameter domain ¢ € [0, 1], a sufficient and necessary
condition for the sweep surface to be smooth at the end
is that P'(0) = P/(1). The arclength parameterization
meets this condition and, in addition, allows uniform
distribution of the twist along the axial curve.

DISCUSSIONS
Examples
A set of examples are first given to show the difference

between the biarc method and two other methods for
computing a moving frame along a free-form curve.

Plate 5 A Mobius strip generated by the biarc method using twist
adjustment

Rotation minimizing frame: W Wang and B Joe

Example 1

Figure 11a—d shows four sweep surfaces generated with
the same cross-section curve and closed axial curve.
Figure 11ais by the RMF computed by the biarc method;
it is a NURBS surface and not closed. Figure 11b is the
closed sweep surface computed by the biarc method with
twist adjustment; it is not a NURBS surface. Figure 11¢
is by the Frenet frame defined by Equation 1; it is a
closed surface. Figure 11d is by the RMF computed by
numerically integrating Equation 4. Note that the Frenet
frame and the RMF computed by numerically integrat-
ing Equation 4 fail to produce a smooth surface, as
explained in the Introduction.

Example 2

The biarc method has circular arc precision; that is, if the
given axial curve is a circle, then it is accurately repro-
duced by the biarc approximation. Plate 6 shows a torus
in NURBS form which is accurately modeled by the
biarc method.

Comparisons

The method based on the integral formula'’ works well
for an axial curve A(u) that is C> with A'(u)x A" (u) # 0,
but fails for a regular and smooth curve with A'(u)x
A"(u) = 0 at some points. By contrast, our method is
robust and is applicable to any regular space curve. This
is illustrated by Figures 1b and ¢, and also by Figures 11a
and d.

We use a helix as the axial curve to compare the
approximation errors of the RMFs given by the biarc
method and Klok’s linear approximation method.
The helix is given by P(t) = (0.3sin(#),0.3cos(1),0.5¢),
1 € [0,27]. Suppose the initial frame of the RMF of
the helix is the same as the initial frame of the Frenet
frame at the starting point P(0) of the helix. It can be
calculated by Equation 4 that the angle difference
between the RMF and the Frenet frame at the

Plate 6 A torusin NURBS representation generated accurately by the
biarc method
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(a)
(c)

(b)
(d)

Figure 11 (a) A surface generated by the RMF computed using the biarc method. (b) A closed surface generated using the biarc method. (¢) A surface
generated by the Frenet frame. (d) A surface generated by the RMF computed according to Equation 4

endpoint P(2w) of the helix is © = 5.387782. It is
found that, to approximate the RMF to within 1% of
©, 12 segments are required by the linear approxima-
tion method and only 4 segments are required by the
biarc method. Further, to approximate the RMF to
within 0.01% of ©, 119 segments are required by the
linear approximation method and only 9 segments are
required by the biarc method. Table 2 shows the errors
of RMFs computed by the two methods with the same
number of segments, . It is found empirically that, for
a general axial curve of finite length, the approxima-
tion error of the RMF by the biarc method is O(n™*),
and the error by the linear approximation method is
O(n?). Thus the biarc method is much more effective
than the linear approximation method in approximat-
ing the RMF.
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Conclusion

Both the polygonal approximation method by Klok'
and the biarc method compute robustly an RMF along a
smooth axial curve for sweep surface modeling. The
biarc method has several advantages over the polygonal
method:

(1) The biarc method yields the same approximation
error of a general axial curve with fewer number of
segments than the polygonal approximation method
would require. [The error of the approximation to the
axial curve is O(h?) for Klok’s method vs O(k?) for
the biarc method.]

(2) The biarc method yields the same approximation
error of the RMF of a general axial curve with fewer



Table 2 The approximation errors of RMF by the biarc method and
the linear approximation method

n Error of Error of
No. of segments biarc method linear method
4 8.46 x 107° 2.89 % 107!
8 547 x 107 9.52 x 107
16 3.45x 1073 2.73 % 1072
32 2.16 x 107¢ 7.19 x 107
64 1.35 % 1077 1.84 > 1077
128 8.46 x 107° 4.64 % 1074
256 5.29 x 1071 117 x 1074
512 331 x 107" 292 %1077
number of segments than the polygonal approximation
method would require. [The error of the approxi-
mation to the RMF is O(n?) for Klok’s method vs
O(n™*) for the biarc method.]

(3) The approximate sweep surface produced by the
biarc method is G' smooth and is in NURBS form,
provided that the cross-section is a NURBS curve. So
the representation is rendering-resolution indepen-
dent and can be used as an internal representation of
the sweep surface for further surface editing.

ACKNOWLEDGEMENTS

The authors are grateful to the referees for their helpful
comments that improved the presentation of this paper.

REFERENCES

Bézier, P., Numerical Control. Wiley, London, 1972.

Bishop, R. L., There is more than one way to frame a curve.
American Mathematical Monthly, 1975, 82, 246-251.
Bloomenthal, M. and Riesenfeld, R. F., Approximation of sweep
surfaces by tensor product NURBS. SPIE Proceedings: Curves
and Surfaces in Computer Vision and Graphies I1, vol. 1610, ed.
M. J. Silbermann and H. D. Tagare, 1991, pp. 132-154.
Bolton, K. M., Biarc curves. Computer-Aided Design, 1975, 7(2),
89-92.

Bronsvoort, W., A. surface-scanning algorithm for displaying
generalized cylinders. The Visual Computer, 1992, 8(3), 162-170.
Bronsvoort, W. and Klok, F., Ray tracing generalized cylinders.
ACM Transactions on Graphics, 1985, 4(4), pp. 291-303.
Chung, T. L. and Wang, W., Discrete moving frames for sweep
surface modeling. To appear in Proceedings of Pacific Graphics
96, 1996, pp. 159-172.

Coquillart, S., A control-point-based sweeping technique. JEEE
CG&A, 1987, 7(11), 36-45.

Fuhs, W. and Stachel, H., Circular pipe-connections. Computer &
Graphics, 1988, 12(1), 53-57.

Guggenheimer, H. W., Computing frames along a trajectory.
Computer Aided Geometric Design, 1989, 6, 77-78.

Hoschek, J., Circular splines. Computer-Aided Design, 1992,
24(11), 611-618.

19.
20.

21.

22.

23.

24,

25.

26.

27.

28,

29.

Rotation minimizing frame: W Wang and B Joe

Klok, F., Two moving coordinate frames for sweeping along a
3D trajectory. Computer Aided Geometric Design, 1986, 3, 217—
229.

Kreyszig, E., Differential Geometry. The University of Toronto
Press, Toronto, 1963,

Lane, J. and Riesenfeld, R., A theoretical development for the
computer generation and display of piecewise polynomial sur-
faces. IEEE Trans. PAMI, 1980, 2, 35-46.

Manocha, D. and Canny, J. F., Detection cusps and inflection
points in curves. Computer Aided Geometric Design, 1992, 9,
1-24.

Meek, D. S. and Walton, D. J., Approximating smooth planar
curves by arc splines. Jowrnal of Computational and Applied
Mathematics, 1995, 59, 221-231.

Nutbourne, A. W. and Martin, R. R., Differential Geometry
Applied to Curve and Surface Design, Vol 1: Foundations. Ellis
Horwood, England, 1988.

Piegl, L., Infinite control points—a method for representing sur-
faces of revolution using boundary data. IEEE CG&A, 1987,
March, 45-55.

Piegl, L. and Tiller, W., The NURBS Book. Springer, 1995,
Rossignac, J. R. and Requicha, A. A., Piecewise-circular curves
for geometric modeling. IBM J. Res. Develop., 1987, 31(3),
296-313.

Sabin, M., The use of piecewise forms for the numerical descrip-
tion of shape. PhD Thesis, Hungarian Academy of Sciences,
1976.

Shani, U. and Ballard, D., Spline as embedding for generalized
cylinders. Computer Vision, Graphics, and Image Processing,
1984, 27, 129-156.

Sharrock, T. J., Biarcs in three dimensions. The Mathematics of
Surfaces II, ed. R. R. Martin. Clarendon Press, Oxford, 1987,
pp- 395-411.

Shoemake, K., Animating rotation with quaternion curves. Pro-
ceedings of SIG-GRAPH '85, 1985, pp. 245-254.

Siltanen, P. and Woodward, C., Normal orientation methods for
3D offset curves, sweep surfaces, skinning. EUROGRAPHICS
'92. Blackwell Publishers, 1992, pp. 449-457.

Su, B. Q. and Liu, D. Y., Computational Geometry: Curve and
Surface Modeling. Academic Press, San Diego, 1989,

Wang, W., Results on conics and quadrics in computer aided geo-
metric design. PhD Thesis, Department of Computing Science,
University of Alberta, Canada, 1992.

Wang, W. and Joe, B., Classification and properties of space
biarcs. SPIE Conference Proceedings: Curves and Surfaces in
Computer Vision and Graphics 111, Boston, Nov. 1992.

Wang, W. and Joe, B., On approximation degree of biarc inter-
polation. Submitted for publication.

van Wijk, J. J., Ray tracing objects defined by sweeping planar
cubic splines. ACM Transactions on Graphics, 1984, 3(3), 223—
237.

Wenping Wang is an assistant professor of computer science. He
received a PhD in computer science from the University of Alberta,
Canada, in 1992. His research interests include computer graphics,
geometric modeling and computational geometry.

Barry Joe is an associate professor. He received a PhD in computer
science from the University of Waterloo, Canada, in 1984. His
research interests include 2D and 3D finite-element mesh generation,
mathematical software, computational geometry, geometric model-
ing, and computer graphics.

391




	NEWimg001.jpg
	NEWimg002.jpg
	NEWimg003.jpg
	NEWimg004.jpg
	NEWimg005.jpg
	NEWimg006.jpg
	NEWimg007.jpg
	NEWimg008.jpg
	NEWimg009.jpg
	NEWimg010.jpg
	NEWimg011.jpg
	NEWimg012.jpg
	NEWimg013.jpg

